

1

Predicting the Genre of Music Samples without Extracting

Audio Features using a Convolutional Neural Network

Eric Zacharia

Computer Science Master’s Student

Specialty in Data Analytics, The University of Chicago

December 1, 2021

Abstract
 Classifying the genre of music is a necessary task for the purposes of organizing a music library and helping

people discover the styles of music they find most enjoyable. While there are many methods of performing this

classification process, there are many differences between methods, which lead to different results. Human

classification is laborious, subject to bias, and impractical for companies like Spotify that need to classify massive

datasets of audio files. This tedious process can instead be automated using machine learning techniques - from the

analysis of extracted audio features using various classification models to the analysis of spectrogram images using

convolutional neural networks (CNN). This article discusses the advantages and disadvantages of both methods,

with bias towards optimizing the CNN model to avoid having to extract features from audio files and develop a

labeled dataset prior to classification.

1 Introduction

The purpose of this project was to create a

convolutional neural network that classifies the genre of

music from audio files with a higher accuracy than the

current baseline predictions. The baseline of predictions

uses various classification models to find common patterns

in the numerical measurement of audio features extracted

from music files differentiated by genre. Classification

using audio features produces good results, but

researchers1 have proposed the idea of classifying the

image representation of the audio file using a CNN to see

if we can do even better. The model was then integrated

into a simple and user-friendly web application for

demonstration purposes.

The dataset used in this project has over 100,000 songs

in the form of MP3 files, and along with that comes a CSV

file that contains the 518 engineered audio features that

were extracted from each MP3 file. Theoretically, songs

with similar features, or similar genres, should cluster

together when plotted in a high dimensional vector space.

These audio features work well with machine learning

classification models, where the labeled output for this

project is the genre of music associated with the .mp3 file.

1.1 Benchmark Analysis on Audio Features

This project begins with the exploration of genre

classification using the extracted audio features methods.

Various machine learning classification models were

explored to get the highest prediction accuracy to serve as

a benchmark for comparison with the CNN method.

Applied models include Logistic Regression (LR), k-

Nearest-Neighbors (kNN), Decision Tree (DT), Multilayer

Perceptron Neural Network (MLP), and Linear,

Polynomial, and Radial Basis Function Support Vector

Machines (SVM). The highest prediction accuracy to serve

as the benchmark was 63%, using an RBF kernel SVM and

the following audio features: mel-frequency cepstrum

coefficients (MFCC), contrast, and spectral centroid.

The SVM works by finding the optimal hyperplane to

separate the data in two dimensions if the data is not

linearly separable. Using the audio features, the SVM

parameters can be tweaked through trial and error to

discover an optimal margin of the hyperplanes that separate

the data. For now, that optimal margin was found using an

RBF kernel and default gamma, 𝛾.

1.2 Featureless Analysis with a CNN

Convolutional neural networks, like ordinary neural

networks, consist of neurons that have learnable weights

and biases. The network computes a loss function on the

last fully connected layer and updates its neurons during

the backpropagation process. CNNs differ in that they are

altered to handle inputs in the form of images, rather than

tables of labeled features. Thus, in order to use a CNN for

genre classification, one must input genre labeled images

that represent the audio files instead of a table of labeled

audio features, which begs the question: How do you

visually represent an audio file?

2 Audio Signal Processing

The process of creating a visual representation from

audio files to serve as input into a CNN follows a series of

transformations of signal data. The user typically has .mp3

files in their music library, which is an audio file, not an

image, but we can transform these files into images for

classification purposes. This project uses the Librosa2

Python package and its many functionalities to make a

series of file conversions in the following order:

1. Moving Picture Experts Group (MPEG) Audio Layer-3

(.mp3)

2. Waveform Audio File Format (.wav)

3. Waveform Image: Amplitude vs. Time (.png)

4. Periodogram: Magnitude vs. Frequency (.png)

5. Spectrogram: Frequency vs. Time (.png)

6. Mel Spectrogram: Mel Scale Frequency vs. Time (.png)

1. FMA: A Dataset for Music Analysis - arXiv:1612.01840v2

[cs.SD] 25 Apr 2017

2. Librosa Python Package

https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://librosa.org/doc/latest/index.html

2

This process begins by converting an .mp3 file to a

.wav file. The Waveform Audio File Format (.wav) is an

audio file format standard, developed by IBM and

Microsoft, for storing an audio bitstream on PCs. The

bitstream is a series of 0s and 1s that represent the signal of

the audio. A signal is a of variation in air pressure measured

by taking samples of the air pressure over a period of time.

The rate at which the air pressure is sampled is called the

sample rate, and a common sample rate is 44.1kHz, or

44,100 samples per second. This signal data is plotted to

create a waveform, which is an image.

Figure 1 Waveform

Great! We have an image. Why not pass this through

the CNN? Well right now, the waveform is relatively

visually similar to other waveforms of completely different

genres. Thus, much like a human, the CNN will have a

difficult time distinguishing patterns for different genres

between waveforms, so we seek to transform this data into

something more useful, and we can do so using the Fourier

transformation.

An audio signal consists of many single-frequency

sound waves. When taking samples of the signal over time,

we only capture the resulting amplitudes. The Fourier

transformation is a mathematical formula that decomposes

a signal into its individual frequencies and the frequency’s

amplitude. Thus, it converts the signal from the time

domain into the frequency domain, which is called a

spectrum. The way this works is through decomposing the

signal into a set of sine and cosine waves that add up to the

original signal.

Figure 2 Fourier Transform and Signal Decompositio𝐧𝟑

The fast Fourier transform (FFT) is an algorithm that

allows us to analyze the frequency of a signal, which is

great, but the frequency of our music signals vary over

time. Thus, we need a way to represent a non-periodic

spectrum of these signals as they vary over time. To

achieve this, the FFT is computed on overlapping

windowed segments of the signal to produce a

spectrogram. Thus, a spectrogram is essentially a bunch of

FFTs stacked on each other, and it visually represents a

signal’s loudness, or amplitude, as it varies over time at

different frequencies. The y-axis is converted to a log scale,

and the color dimension is converted to decibels, which is

also on a log scale because humans can only perceive a

very small and concentrated range of frequencies and

amplitudes.

Figure 3 Mel Spectrogram

Studies have shown that humans do not perceive

frequencies on a linear scale. We are better at detecting

differences in lower frequencies than higher frequencies.

Thus, in 1937, researchers proposed a unit of pitch such

that equal distances in pitch sounded equally distant to the

listener, measured on what is now called the mel scale. The

Mel Spectrogram is simply the spectrogram with

frequencies converted to the mel scale, and all these

transformations were made possible using the Librosa

Python package. Now we’re ready to pass this through our

CNN, but first a little context on why we’re using a CNN.

3 Related Work

In 2017, a team of researchers introduced the dataset,

titled “FMA: A Dataset for Music Analysis”. FMA stands

for Free Music Archive, so all the music provided in the

dataset is copyright free. There are plenty of other music

archives, some much larger than this one, but this data is

unique in that it includes the engineered audio features for

each song. This was necessary to save time from having to

create audio features for songs in another large dataset

using Librosa.

The authors of this paper have already completed

benchmark analyses using various machine learning

models that consider the audio features, but the accuracies

of the genre classification did not exceed 63% using their

own medium sized dataset, with the best results coming

from a support vector machine model. They ended their

paper with the proposal that someone could try to improve

on this using neural networks that analyze only the

waveform.

About a year later, another team4 released their work

where they proposed a Convolutional Neural Network to

identify an artist from an audio’s spectrogram. After

training their Convolutional Neural Network model, they 3. Leland Roberts, 2020. "Understanding the Mel Spectrogram"

4. Representation Learning of Music Using Artist Labels -

arXiv:1710.06648v2 [cs.SD] 19 Jun 2018

https://arxiv.org/abs/1710.06648
https://arxiv.org/abs/1710.06648

3

fed it songs with the intention to find Similar songs, and

they did so with about 72% test accuracy, which means that

their CNN was successful in distinguishing patterns of

significance in the spectrograms between genres. Thus,

from here it would be interesting to play around with the

various layers in a CNN model to get that prediction

accuracy even higher.

4 Results

4.1 Benchmark Results

Of the 518 features, some are more useful than others,

and perhaps some of them cause more noise and overfitting

than they are helpful. Through trial and error, using only

the MFCC, contrast, and spectral centroid features

produced the best prediction accuracies, with MFCC being

the most important. MFCC is a set of coefficients that

describe the shape of spectral envelope. Contrast measures

the difference between foreground noise, such as speech,

and background noise, such as instrumentals. Spectral

Centroid characterizes where the center of mass of the

spectrum is located.

Figure 4 Benchmark Results

Unsurprisingly, results from the larger “medium

dataset” provided higher prediction accuracies. The results

from this project matched the results from the FMA

research paper with a maximum of 63% prediction

accuracy using an SVM.

Understanding how this process works helped

rationalize why a different approach might be appealing.

The process of extracting audio features for a large dataset

of audio files is a time-consuming process, but of course,

this only needs to be done each time we train our model.

Thus, if it produces better results then why not.

Fortunately, better results were found using the CNN

method.

4.2 CNN Results

For this model, the data was rearranged into 9 genre

folders, each with 1000 audio files, which is comparable in

size to the organization of the small dataset of audio

features. The audio files were shuffled and then train - test

split 90 – 10.

The CNN model is built using Keras5, consists of 6

convolutional layers, a dropout layer to reduce over-fitting,

and a dense layer with a SoftMax activation to output genre

probabilities. The model is trained for 100 epochs, with a

learning rate of 𝛼 = 0.00005, a 30% dropout rate, a 3 x 3

kernel size, and 6 convolutional layers, which resulted in a

training accuracy of 99.7%, a test/validation accuracy of

83%.

Figure 5 CNN Prediction Accuracies

Figure 6 CNN Training vs Validation Accuracies

Figure 7 CNN Training vs Validation Loss Function

The training accuracy is much higher than the test

accuracy, which may be due to the dataset being on the

smaller side. I think that the model is probably capturing

the patterns inside the training data and overfits a bit

because the variance of the larger training set is greater

than the smaller test set.

5. Keras deep learning API Python Library. https://keras.io/api/

https://keras.io/api/

4

5 Web Application and Analysis of

Classifications

The application of this model was created to

demonstrate the success of the CNN model’s prediction

capabilities on songs of the user’s choosing.

First, the user is prompted to either browse or drag-

and-drop an .mp3 file to be uploaded for genre

classification. The background pipeline then processes this

.mp3 file by making its transformations from waveforms to

mel spectrograms to be assessed by the pretrained CNN

model. The application makes its prediction, and outputs

the SoftMax probabilities for all genres under

consideration, as well as the mel spectrogram image

representing the song of choice.

The web application was built using the Streamlit6

Python package, which handles the web formatting, so the

application looks nice without much effort. Below is a

screenshot of the application after uploading the rock song,

“Smells Like Teen Spirit”.

Figure 8 Web Application – Genre Classifier

After testing various songs from my personal music

library, I would concur that approximately 4 out of 5 songs

are classified correctly, but some genres have better

performance than others.

Often the songs that were misclassified were arguably

in a gray are between genres. One particularly interesting

example of an incorrect classification was found with the

rock song “Learn to Fly” by the Foo Fighters, which the

model classified as metal, but many others would classify

it as rock.

Figure 9 Incorrect Genre Classification – “Learn to Fly”

For those who are not familiar, The Foo Fighters is a

rock band, but their lead singer generally has a loud style

of singing, which is a common theme found in metal

music. Thus, I don’t find this misclassification to be

surprising, but I do think that customers using a music

service like this would have an issue with such a mistake.

5.1 Thinking Like a Machine

I decided to investigate why such misclassifications

might be happening with hope that I could unveil the

problem for a future solution.

Thinking like a machine, the convolutional neural

network scans the pixels in the image for common patterns

found in contrasting pixel edges. Basically, I figured that if

I can personally distinguish between photos of cats and

dogs, then perhaps I may be able to recognize differences

between genres in the Mel Spectrograms that are being fed

into the CNN.

As you can see in the following figures, there are

distinct differences between genres of music. While the

two Spectrograms from each Genre Example do not look

exactly alike, you might be able to imagine how the model

is generalizing these patterns as similar. The bottom row

displays the spectrograms for two songs classified as

Metal, but “Learn to Fly” is more popularly known as

Rock. So clearly, there exists some gray area between

genres, but the rock song’s spectrogram does look

strikingly similar to the spectrogram of the metal song,

compared to the other genres in the figure.

6. Streamlit – easy web apps for data science Python Library.

https://docs.streamlit.io/

https://docs.streamlit.io/

5

Figure 10 Spectrogram Variation by Genre

This presents a challenge to the model to correctly

classify songs that reside in gray areas between genres, but

genre classification is somewhat subjective anyways,

right? I find it helpful to imagine this classification as the

machine’s unbiased opinion based solely on the

spectrogram image it studies. It is not told by anyone that

most people would classify this song as rock, or that the

song comes from a rock band. It makes up its decision

without any biases based on signal data, and this can only

get better with more training and tweaking.

6 Areas of Improvement

While the prediction accuracies appear to be very high,

I have been able to identify some of its struggles through

experimentation with audio files.

The model to have an issue with misclassifying songs

that are relatively louder than others as metal songs, and I

think this can be avoided. With some tweaking to the CNN

parameters, the overall accuracy can be improved, and with

more music, some gray-area music genres can be classified

better. For example, there is a significant difference in the

spectrograms between old country songs and new country

songs. New country appears more so like rock and pop,

while the model is trained more so on old country. This can

be improved upon with more genre classes for prediction

and with more data that encompasses more sub-styles

within each genre.

This of course can be helped with adding more data,

which is certainly available, and possible to implement

with more time to work on this project.

Also, besides just throwing more data at the model to

train on - I think the overfitting issue can be mitigated with

some cross validation on the data so it can find a more

optimal splitting of training and testing data.

7 Effort

Initially I did a lot of research on SVMs7 because I

wanted to see if I could beat the FMA research paper’s

benchmark prediction accuracy using the extracted audio

features. I ended up matching their accuracy using the same

size dataset and chose to move on for the sake of time.

The decision to work with audio data instead of image

data or only tabulated feature data presented a lot of room

for learning about audio signal processing and

refamiliarizing myself with convolutional neural networks.

I did some deeper research into CNNs, which have a

lot of options for fine tuning the model available, such as

picking an optimal learning rate, kernel size, stride,

dropout rate, and number of layers. Playing around with

these parameters ultimately improved the performance of

my model.

Learning everything audio signal processing was

probably the most complex task. I began with studying the

terminology found in the extracted feature data so I could

understand what I was working with, which helped me

discover which features might have more importance than

others, and which might be noise in the model. Next,

understanding the transformation process from .mp3 files

to mel spectrograms was pertinent to the success of the

CNN model. This model’s higher prediction accuracy

would not be possible without the mel spectrogram, and all

these transformations would not have been doable within

the timeframe of this project without the Librosa library.

Thus, learning the methods available in Librosa to make

these transformations possible was necessary, given the

time available to work on this project.

Already having learned PyTorch in the past, I chose to

expose myself to TensorFlow and Keras, for resume

building purposes. They are extremely similar, and the

documentation helped me realize the similarities.

I learned about streamlit from friends in the Data

Science community. It is a popular Python package

amongst data scientists who want to get their models into

nice looking web applications with minimal effort, and it is

well documented – making it easy for me to quickly get my

own web application running.

8 Conclusion

I would be very interested to know if models like this

one are currently used at large companies for similar

purposes. I wonder how they might handle mistakes in

classification, such as initially publishing results like

“Learn to Fly is metal” and later correcting those mistakes

that come to light from their customer base. Or perhaps

their models have much higher prediction accuracies, and

this problem is not so prevalent.

7. Scikit-learn SVM Classifier. https://scikit-
learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-

glr-auto-examples-svm-plot-iris-svc-py

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py

6

After running through both methods, I believe that the

CNN has a lot more potential for success compared to the

method of extracting audio features. Better results were

found using less data. One advantage to the audio features

is not needing to keep the audio files after extracting the

features, so if computer memory is an issue, then perhaps

one might be interested in pursuing the optimization of

audio feature models.

Bibliography

1. Michaël Defferrard, Kirell Benzi, Pierre

Vandergheynst, Xavier Bressony, 2017. "FMA: A

Dataset for Music Analysis"

2. Librosa – Audio and Music processing in Python

Library https://librosa.org/

3. Leland Roberts. 2020. "Understanding the Mel

Spectrogram"

4. Jiyoung Park, Jongpil Lee, Jangyeon Park, Jung-Woo

Ha, Juhan Nam. 2018. "Representation Learning of

Music Using Artist Labels"

5. Keras deep learning API Python Library.

https://keras.io/api/

6. Streamlit – easy web apps for data science Python

Library. https://docs.streamlit.io/

7. Scikit-learn SVM Classifier. https://scikit-

learn.org/stable/auto_examples/svm/plot_iris_svc.ht

ml#sphx-glr-auto-examples-svm-plot-iris-svc-py

8. Benjamin Murauer, Günther Specht. 2018. "Detecting

Music Genre Using Extreme Gradient Boosting"

9. Seth Adams. 2018. “DSP Background – Deep

Learning for Audio Classification (p.1 & p.2)”

A Appendix

A.1 Source Code

The source code for this project with instructions on

how to run the web application can be found on

GitHub at

github.com/ericzacharia/MusicGenreClassifier.

A.2 Video Presentation

A video presentation on this article can be found on

YouTube at

https://www.youtube.com/watch?v=uCnjrpbmTC0 .

https://librosa.org/
https://keras.io/api/
https://docs.streamlit.io/
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
https://github.com/ericzacharia/MusicGenreClassifier
https://www.youtube.com/watch?v=uCnjrpbmTC0

