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Abstract 
 Classifying the genre of music is a necessary task for the purposes of organizing a music library and helping 

people discover the styles of music they find most enjoyable. While there are many methods of performing this 

classification process, there are many differences between methods, which lead to different results. Human 

classification is laborious, subject to bias, and impractical for companies like Spotify that need to classify massive 

datasets of audio files. This tedious process can instead be automated using machine learning techniques - from the 

analysis of extracted audio features using various classification models to the analysis of spectrogram images using 

convolutional neural networks (CNN). This article discusses the advantages and disadvantages of both methods, 

with bias towards optimizing the CNN model to avoid having to extract features from audio files and develop a 

labeled dataset prior to classification. 

 

1 Introduction 

The purpose of this project was to create a 

convolutional neural network that classifies the genre of 

music from audio files with a higher accuracy than the 

current baseline predictions. The baseline of predictions 

uses various classification models to find common patterns 

in the numerical measurement of audio features extracted 

from music files differentiated by genre. Classification 

using audio features produces good results, but 

researchers1 have proposed the idea of classifying the 

image representation of the audio file using a CNN to see 

if we can do even better. The model was then integrated 

into a simple and user-friendly web application for 

demonstration purposes. 

The dataset used in this project has over 100,000 songs 

in the form of MP3 files, and along with that comes a CSV 

file that contains the 518 engineered audio features that 

were extracted from each MP3 file. Theoretically, songs 

with similar features, or similar genres, should cluster 

together when plotted in a high dimensional vector space. 

These audio features work well with machine learning 

classification models, where the labeled output for this 

project is the genre of music associated with the .mp3 file. 

1.1 Benchmark Analysis on Audio Features 

This project begins with the exploration of genre 

classification using the extracted audio features methods. 

Various machine learning classification models were 

explored to get the highest prediction accuracy to serve as 

a benchmark for comparison with the CNN method. 

Applied models include Logistic Regression (LR), k-

Nearest-Neighbors (kNN), Decision Tree (DT), Multilayer 

Perceptron Neural Network (MLP), and Linear, 

Polynomial, and Radial Basis Function Support Vector 

Machines (SVM). The highest prediction accuracy to serve 

as the benchmark was 63%, using an RBF kernel SVM and 

the following audio features: mel-frequency cepstrum 

coefficients (MFCC), contrast, and spectral centroid.  

The SVM works by finding the optimal hyperplane to 

separate the data in two dimensions if the data is not 

linearly separable. Using the audio features, the SVM 

parameters can be tweaked through trial and error to 

discover an optimal margin of the hyperplanes that separate 

the data. For now, that optimal margin was found using an 

RBF kernel and default gamma, 𝛾. 

1.2 Featureless Analysis with a CNN 

Convolutional neural networks, like ordinary neural 

networks, consist of neurons that have learnable weights 

and biases. The network computes a loss function on the 

last fully connected layer and updates its neurons during 

the backpropagation process. CNNs differ in that they are 

altered to handle inputs in the form of images, rather than 

tables of labeled features. Thus, in order to use a CNN for 

genre classification, one must input genre labeled images 

that represent the audio files instead of a table of labeled 

audio features, which begs the question: How do you 

visually represent an audio file? 

2 Audio Signal Processing 

The process of creating a visual representation from 

audio files to serve as input into a CNN follows a series of 

transformations of signal data. The user typically has .mp3 

files in their music library, which is an audio file, not an 

image, but we can transform these files into images for 

classification purposes. This project uses the Librosa2 

Python package and its many functionalities to make a 

series of file conversions in the following order: 

1. Moving Picture Experts Group (MPEG) Audio Layer-3 

(.mp3) 

2. Waveform Audio File Format (.wav) 

3. Waveform Image: Amplitude vs. Time  (.png) 

4. Periodogram: Magnitude vs. Frequency (.png) 

5. Spectrogram: Frequency vs. Time (.png) 

6. Mel Spectrogram: Mel Scale Frequency vs. Time (.png) 

1. FMA: A Dataset for Music Analysis - arXiv:1612.01840v2 

[cs.SD] 25 Apr 2017  

2. Librosa Python Package 

 

 

https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1612.01840
https://librosa.org/doc/latest/index.html


 

2 

This process begins by converting an .mp3 file to a 

.wav file. The  Waveform Audio File Format (.wav) is an 

audio file format standard, developed by IBM and 

Microsoft, for storing an audio bitstream on PCs. The 

bitstream is a series of 0s and 1s that represent the signal of 

the audio. A signal is a of variation in air pressure measured 

by taking samples of the air pressure over a period of time. 

The rate at which the air pressure is sampled is called the 

sample rate, and a common sample rate is 44.1kHz, or 

44,100 samples per second. This signal data is plotted to 

create a waveform, which is an image.  

Figure 1    Waveform 

Great! We have an image. Why not pass this through 

the CNN? Well right now, the waveform is relatively 

visually similar to other waveforms of completely different 

genres. Thus, much like a human, the CNN will have a 

difficult time distinguishing patterns for different genres 

between waveforms, so we seek to transform this data into 

something more useful, and we can do so using the Fourier 

transformation.  

An audio signal consists of many single-frequency 

sound waves. When taking samples of the signal over time, 

we only capture the resulting amplitudes. The Fourier 

transformation is a mathematical formula that decomposes 

a signal into its individual frequencies and the frequency’s 

amplitude. Thus, it converts the signal from the time 

domain into the frequency domain, which is called a 

spectrum. The way this works is through decomposing the  

signal into a set of sine and cosine waves that add up to the 

original signal. 

Figure 2    Fourier Transform and Signal Decompositio𝐧𝟑 

The fast Fourier transform (FFT) is an algorithm that 

allows us to analyze the frequency of a signal, which is 

great, but the frequency of our music signals vary over 

time. Thus, we need a way to represent a non-periodic 

spectrum of these signals as they vary over time. To 

achieve this, the FFT is computed on overlapping 

windowed segments of the signal to produce a 

spectrogram. Thus, a spectrogram is essentially a bunch of 

FFTs stacked on each other, and it visually represents a 

signal’s loudness, or amplitude, as it varies over time at 

different frequencies. The y-axis is converted to a log scale, 

and the color dimension is converted to decibels, which is 

also on a log scale because humans can only perceive a 

very small and concentrated range of frequencies and 

amplitudes. 

Figure 3    Mel Spectrogram 

Studies have shown that humans do not perceive 

frequencies on a linear scale. We are better at detecting 

differences in lower frequencies than higher frequencies. 

Thus, in 1937, researchers proposed a unit of pitch such 

that equal distances in pitch sounded equally distant to the 

listener, measured on what is now called the mel scale. The 

Mel Spectrogram is simply the spectrogram with 

frequencies converted to the mel scale, and all these 

transformations were made possible using the Librosa 

Python package. Now we’re ready to pass this through our 

CNN, but first a little context on why we’re using a CNN. 

3 Related Work 

In 2017, a team of researchers introduced the dataset, 

titled “FMA: A Dataset for Music Analysis”. FMA stands 

for Free Music Archive, so all the music provided in the 

dataset is copyright free. There are plenty of other music 

archives, some much larger than this one, but this data is 

unique in that it includes the engineered audio features for 

each song. This was necessary to save time from having to 

create audio features for songs in another large dataset 

using Librosa. 

The authors of this paper have already completed 

benchmark analyses using various machine learning 

models that consider the audio features, but the accuracies 

of the genre classification did not exceed 63% using their 

own medium sized dataset, with the best results coming 

from a support vector machine model. They ended their 

paper with the proposal that someone could try to improve 

on this using neural networks that analyze only the 

waveform. 

About a year later, another team4 released their work 

where they proposed a Convolutional Neural Network to 

identify an artist from an audio’s spectrogram. After 

training their Convolutional Neural Network model, they 3. Leland Roberts, 2020. "Understanding the Mel Spectrogram"  

4. Representation Learning of Music Using Artist Labels - 

arXiv:1710.06648v2 [cs.SD] 19 Jun 2018 

https://arxiv.org/abs/1710.06648
https://arxiv.org/abs/1710.06648


 

3 

fed it songs with the intention to find Similar songs, and 

they did so with about 72% test accuracy, which means that 

their CNN was successful in distinguishing patterns of 

significance in the spectrograms between genres. Thus, 

from here it would be interesting to play around with the 

various layers in a CNN model to get that prediction 

accuracy even higher.  

4 Results 

4.1 Benchmark Results 

Of the 518 features, some are more useful than others, 

and perhaps some of them cause more noise and overfitting 

than they are helpful. Through trial and error, using only 

the MFCC, contrast, and spectral centroid features 

produced the best prediction accuracies, with MFCC being 

the most important. MFCC is a set of coefficients that 

describe the shape of spectral envelope. Contrast measures 

the difference between foreground noise, such as speech, 

and background noise, such as instrumentals. Spectral 

Centroid characterizes where the center of mass of the 

spectrum is located.  

Figure 4    Benchmark Results 

Unsurprisingly, results from the larger “medium 

dataset” provided higher prediction accuracies. The results 

from this project matched the results from the FMA 

research paper with a maximum of 63% prediction 

accuracy using an SVM. 

Understanding how this process works helped 

rationalize why a different approach might be appealing. 

The process of extracting audio features for a large dataset 

of audio files is a time-consuming process, but of course, 

this only needs to be done each time we train our model. 

Thus, if it produces better results then why not. 

Fortunately, better results were found using the CNN 

method. 

4.2 CNN Results 

For this model, the data was rearranged into 9 genre 

folders, each with 1000 audio files, which is comparable in 

size to the organization of the small dataset of audio 

features. The audio files were shuffled and then train - test 

split 90 – 10.  

The CNN model is built using Keras5, consists of 6 

convolutional layers, a dropout layer to reduce over-fitting, 

and a dense layer with a SoftMax activation to output genre 

probabilities. The model is trained for 100 epochs, with a 

learning rate of 𝛼 = 0.00005, a 30% dropout rate, a 3 x 3 

kernel size, and 6 convolutional layers, which resulted in a 

training accuracy of 99.7%, a test/validation accuracy of 

83%.  

 

Figure 5    CNN Prediction Accuracies 

 

 

Figure 6    CNN Training vs Validation Accuracies 

 

 

Figure 7    CNN Training vs Validation Loss Function 

 

The training accuracy is much higher than the test 

accuracy, which may be due to the dataset being on the 

smaller side. I think that the model is probably capturing 

the patterns inside the training data and overfits a bit 

because the variance of the larger training set is greater 

than the smaller test set.  

5. Keras deep learning API Python Library. https://keras.io/api/ 

https://keras.io/api/


 

4 

5 Web Application and Analysis of 

Classifications 

The application of this model was created to 

demonstrate the success of the CNN model’s prediction 

capabilities on songs of the user’s choosing.  

First, the user is prompted to either browse or drag-

and-drop an .mp3 file to be uploaded for genre 

classification. The background pipeline then processes this 

.mp3 file by making its transformations from waveforms to 

mel spectrograms to be assessed by the pretrained CNN 

model. The application makes its prediction, and outputs 

the SoftMax probabilities for all genres under 

consideration, as well as the mel spectrogram image 

representing the song of choice. 

The web application was built using the Streamlit6 

Python package, which handles the web formatting, so the 

application looks nice without much effort. Below is a 

screenshot of the application after uploading the rock song, 

“Smells Like Teen Spirit”. 

Figure 8    Web Application – Genre Classifier 

After testing various songs from my personal music 

library, I would concur that approximately 4 out of 5 songs 

are classified correctly, but some genres have better 

performance than others. 

Often the songs that were misclassified were arguably 

in a gray are between genres. One particularly interesting 

example of an incorrect classification was found with the 

rock song “Learn to Fly” by the Foo Fighters, which the 

model classified as metal, but many others would classify 

it as rock.  

Figure 9    Incorrect Genre Classification – “Learn to Fly” 

For those who are not familiar, The Foo Fighters is a 

rock band, but their lead singer generally has a loud style 

of singing, which is a common theme found in metal 

music. Thus, I don’t find this misclassification to be 

surprising, but I do think that customers using a music 

service like this would have an issue with such a mistake. 

5.1 Thinking Like a Machine 

I decided to investigate why such misclassifications 

might be happening with hope that I could unveil the 

problem for a future solution. 

Thinking like a machine, the convolutional neural 

network scans the pixels in the image for common patterns 

found in contrasting pixel edges. Basically, I figured that if 

I can personally distinguish between photos of cats and 

dogs, then perhaps I may be able to recognize differences 

between genres in the Mel Spectrograms that are being fed 

into the CNN.  

As you can see in the following figures, there are 

distinct differences between genres of music. While the 

two Spectrograms from each Genre Example do not look 

exactly alike, you might be able to imagine how the model 

is generalizing these patterns as similar. The bottom row 

displays the spectrograms for two songs classified as 

Metal, but “Learn to Fly” is more popularly known as 

Rock. So clearly, there exists some gray area between 

genres, but the rock song’s spectrogram does look 

strikingly similar to the spectrogram of the metal song, 

compared to the other genres in the figure. 

 

6. Streamlit – easy web apps for data science Python Library. 

https://docs.streamlit.io/ 

https://docs.streamlit.io/


 

5 

Figure 10    Spectrogram Variation by Genre 

This presents a challenge to the model to correctly 

classify songs that reside in gray areas between genres, but 

genre classification is somewhat subjective anyways, 

right? I find it helpful to imagine this classification as the 

machine’s unbiased opinion based solely on the 

spectrogram image it studies. It is not told by anyone that 

most people would classify this song as rock, or that the 

song comes from a rock band. It makes up its decision 

without any biases based on signal data, and this can only 

get better with more training and tweaking. 

6 Areas of Improvement 

While the prediction accuracies appear to be very high, 

I have been able to identify some of its struggles through 

experimentation with audio files.  

The model to have an issue with misclassifying songs 

that are relatively louder than others as metal songs, and I 

think this can be avoided. With some tweaking to the CNN 

parameters, the overall accuracy can be improved, and with 

more music, some gray-area music genres can be classified 

better. For example, there is a significant difference in the 

spectrograms between old country songs and new country 

songs. New country appears more so like rock and pop, 

while the model is trained more so on old country. This can 

be improved upon with more genre classes for prediction 

and with more data that encompasses more sub-styles 

within each genre.  

This of course can be helped with adding more data, 

which is certainly available, and possible to implement 

with more time to work on this project.  

Also, besides just throwing more data at the model to 

train on - I think the overfitting issue can be mitigated with 

some cross validation on the data so it can find a more 

optimal splitting of training and testing data. 

7 Effort 

Initially I did a lot of research on SVMs7 because I 

wanted to see if I could beat the FMA research paper’s 

benchmark prediction accuracy using the extracted audio 

features. I ended up matching their accuracy using the same 

size dataset and chose to move on for the sake of time. 

The decision to work with audio data instead of image 

data or only tabulated feature data presented a lot of room 

for learning about audio signal processing and 

refamiliarizing myself with convolutional neural networks.  

I did some deeper research into CNNs, which have a 

lot of options for fine tuning the model available, such as 

picking an optimal learning rate, kernel size, stride, 

dropout rate, and number of layers. Playing around with 

these parameters ultimately improved the performance of 

my model. 

Learning everything audio signal processing was 

probably the most complex task. I began with studying the 

terminology found in the extracted feature data so I could 

understand what I was working with, which helped me 

discover which features might have more importance than 

others, and which might be noise in the model. Next, 

understanding the transformation process from .mp3 files 

to mel spectrograms was pertinent to the success of the 

CNN model. This model’s higher prediction accuracy 

would not be possible without the mel spectrogram, and all 

these transformations would not have been doable within 

the timeframe of this project without the Librosa library. 

Thus, learning the methods available in Librosa to make 

these transformations possible was necessary, given the 

time available to work on this project. 

Already having learned PyTorch in the past, I chose to 

expose myself to TensorFlow and Keras, for resume 

building purposes. They are extremely similar, and the 

documentation helped me realize the similarities. 

I learned about streamlit from friends in the Data 

Science community. It is a popular Python package 

amongst data scientists who want to get their models into 

nice looking web applications with minimal effort, and it is 

well documented – making it easy for me to quickly get my 

own web application running. 

8 Conclusion 

I would be very interested to know if models like this 

one are currently used at large companies for similar 

purposes. I wonder how they might handle mistakes in 

classification, such as initially publishing results like 

“Learn to Fly is metal” and later correcting those mistakes 

that come to light from their customer base. Or perhaps 

their  models have much higher prediction accuracies, and 

this problem is not so prevalent.  

7. Scikit-learn SVM Classifier. https://scikit-
learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-

glr-auto-examples-svm-plot-iris-svc-py 

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html#sphx-glr-auto-examples-svm-plot-iris-svc-py
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After running through both methods, I believe that the 

CNN has  a lot more potential for success compared to the 

method of extracting audio features. Better results were 

found using less data. One advantage to the audio features 

is not needing to keep the audio files after extracting the  

features, so if computer memory is an issue, then perhaps 

one might be interested in pursuing the optimization of 

audio feature models.
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A Appendix 

A.1 Source Code 

The source code for this project with instructions on 

how to run the web application can be found on 

GitHub at 

github.com/ericzacharia/MusicGenreClassifier. 

A.2 Video Presentation 

A video presentation on this article can be found on 

YouTube at 

https://www.youtube.com/watch?v=uCnjrpbmTC0 .
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