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Abstract 
 Predicting the best stocks to buy while day-trading the stock market is a dream for many seeking financial 

freedom. While there are heaps of existing day-trading strategies, many of them involve long hours of strict human 

focus on the numerical trends of stock prices and the contextual trends from news sources that directly correlate to 

the future value of publicly traded companies. We live in an age where there exists a subcategory of machine learning 

that can help reduce the manual burden of analysis and automate tasks that predict trends quicker than any human. 

Enter Natural Language Processing (NLP) and the Transformer1 model for sentiment analysis. This article 

discusses the use of an NLP pipeline that trains an altered BERT2 model with tweets from Twitter to make 

predictions about their bullish and bearish sentiments concerning stocks. The pipeline then conducts trades based 

on a user’s predefined portfolio and desired risk level. 

 

1 Introduction 

The purpose of this project was to create an artificially 

intelligent stock trading bot that makes decisions regarding 

the trading of stocks based on the opinions that people 

share about stocks on Twitter. The word “intelligent” is 

used to describe how this bot performs because it makes 

decisions without human intervention using probability. 

This intelligence is attained using supervised machine 

learning techniques, which is the process of using pre-

labeled data and probability theory to make predictions on 

unclassified data.  

In our case, we have a labeled dataset of Tweets about 

stocks and their corresponding bearish or bullish sentiment, 

which was used to train and test the sentiment classification 

model. The words bearish and bullish refer to the perceived 

trend of how well the price per share of a publicly traded 

company is performing on the stock market. Bearish is 

perceived as poor performance that would decrease the 

company’s value, and bullish is perceived as strong 

performance that would increase the company’s value. 

Trading stocks on these sentiments, before everyone else 

does, to return a profit would be considered “predicting the 

stock market.” 

1.1 Why Sentiment Analysis? 

Many investors are swayed in their trading 

decisions by news about publicly traded companies, and 

many of those investors include the analysis of news in 

their stock trading strategy. Some long-term traders might 

be more interested in calculating the valuation of a stock 

based in the company’s performance metrics, while many 

short-term or day-traders might find including news in their 

analysis to be beneficial. 

1.2 Why Use Twitter as the Source of News? 

Often-times a news headline can give us a gist of 

whether a company is about to make or lose a lot of money, 

but there are a few reasons why this bot is focused on using 

tweets from Twitter for sentiment analysis instead of 

typical well-known news sources, such as The Wall Street 

Journal.  

News articles are long. Predicting the sentiment on a 

long piece of text can cause a lengthy computation time for 

our model. This can cause issues for day-trading stocks 

because time is of the essence. Keeping the analyzed text 

short and sweet can make for swift analysis and thus 

quicker trading. Thus, perhaps we could consider just the 

news headline? 

A potentially harmful issue with using just news 

headlines is “click-bait,” which is a flashy headline that 

encourages potential readers to click on an article and start 

reading it. Sometimes the contents of these articles do not 

align with the potentially misleading headline – which 

could mean tricking the bot into predicting a bearish 

sentiment when the article might have bullish sentiment. 

Two major downfalls of mainstream news are the low 

volume of articles that get produced per day and the time it 

takes for a journalism team to produce it. There are many 

news sources reporting on the stock market, but their 

abundance is countably finite and their proofing takes time. 

Thus, we turn our attention to tweets about stocks on 

Twitter. 

While tweets on Twitter are neither infinite nor 

factual, the overwhelming volume of opinions that get 

shared on Twitter every second is appealing due to its 

fluidity, and people on Twitter tend to express their 

opinions via tweets about how stocks are performing 

throughout market hours. This information is valuable 

because it can be viewed as contextual information for how 

the market is performing in real time. Natural Language 

Processing and sentiment analysis can be used to identify 

trends from these opinions and produce a majority-ruled 

polarity score for the sentiment of a particular stock. People 

are relatively quick to post a quick tweet about a major 

1. Attention is all you need - arXiv:1706.03762v5 [cs.CL] 6 Dec 

2017 

2. BERT: Pre-training of Deep Bidirectional Transformers for 

Language Understanding - arXiv:1810.04805v2 [cs.CL] 24 

May 2019 
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price change of a stock compared to the time it takes for a 

journalist to post an article about it on the web. 

The speed of Twitter relative to typical news stories 

can be illustrated with an example of a panic-driven sell-

off in market shares that occurred on April 23rd, 2013. The 

sell-off was caused by a tweet3 from The Associated Press’ 

Twitter account that read, “Breaking: Two Explosions in 

the White House and Barak Obama is injured.” At the time, 

The Associated Press (AP) had about 11 million followers, 

and the moment the tweet was released, investors had sold 

stocks in a panic, only to find that the tweet was malicious.  

 

Figure 1    Malicious Tweet on Associated Press’ Twitter Account 

This example plays a major role in why many 

investors today monitor Twitter for news headlines – 

because news spreads quickly on Twitter. News stations 

were not quick enough to cover this 5-minute event, but 

other market analysts were able to denounce this fake tweet 

using Twitter much sooner. This example certainly shows 

a shortcoming of sentiment analysis of tweets. How do we 

know that a tweet is legitimate? It is also to shows why we 

are interested in Twitter and not just news headlines – 

because Twitter news travels faster. 

1.3 The Language Model 

The sentiment analysis of text builds off the idea of a 

language model, which is a probability distribution over a 

sequence of words. Language models have evolved from 

n-gram models, which struggle with sparse vectors and 

expensive computation, to neural network models, which 

struggle contextually with the restrictive window-of-words 

Markov Assumption, to recurrent neural network models, 

which struggle with vanishing and exploding gradients, to 

Long-Short-Term-Memory models, which struggle with 

lengthy training times due to their recursive and 

computationally dependent nature, to the rather new 

Transformer models which reduce training times by 

allowing for some parallel computation to be done during 

training.  

The BERT model is a popular refined version of the 

original Transformer model, and because it has gained a lot 

of popularity for its successes with accuracy and quickness 

in recent years – it presented itself as an obvious choice for 

this type of project.  

2 Related Work 

In 2016, a team of researchers claimed that a strong 

correlation exists between rise and fall in stock prices of a 

company and the public opinions or emotions about that 

company expressed on Twitter through tweets4. The main 

contribution of their work is the development of a 

sentiment analyzer that can judge the type of sentiment 

present in the tweet using an n-gram model and a 

Word2vec model. They concluded their research without 

any documented application.   

In 2017, a team of researchers investigated the 

simultaneous effect of analyzing different types of news 

along with historical numeric attributes for understanding 

stock market behavior5. Their model improved its 

accuracy by considering news with different values of 

numeric attributes during a day. Three categories of news 

data were considered: news relevant to market, company 

news and financial reports that were published by financial 

experts about stocks. The model consisted of two stages. 1. 

Determine the news polarities to be either positive or 

negative using naïve Bayes algorithm. 2. Incorporate the 

output of the first stage as input along with the processed 

historical numeric data attributes to predict the future stock 

trend using K-NN algorithm. Their model achieved an 

accuracy up to 89.80%. They also concluded their research 

without documented application. 

In 2020, a YouTuber, named “The Code Whisperer” 

posted a video6 of himself writing code to scrape tweets 

from Twitter, analyze their sentiment, and then conduct 

trades based on that sentiment using the Alpaca trading 

platform. He appears to classify tweets using a python 

library called pickle, and he also uses Tweepy for scraping 

tweets. This video was the primary inspiration for this 

project.  

3 Sentiment-Trading Pipeline 

3.1 Tools for Implementation 

The entire pipeline is written in Python using multiple 

libraries. The PyTorch and Pandas libraries are used 

throughout the program to organize and manipulate tensors 

and matrices of data used to train the model and make 

predictions on the sentiment of text. The base BERT 

Transformer model that is used comes from the developers 

at hugging face7. 

The model is initially trained with Google Colab’s 

GPUs, then its tensors and predictions are saved into files 

to be used again as a pretrained model that is read into the 

program. This was helpful to prevent running over Google 

Colab’s GPU computation limit and allows for the 

remainder of the pipeline to be quickly run on a local 

machine’s CPU.  

3. Syrian hackers claim AP hack that tipped stock market by 

$136 billion. Is it terrorism? - The Washington Post 

4. Sentiment Analysis of Twitter Data for Predicting Stock 

Market Movements -  arXiv:1610.09225v1 [cs.IR] 28 Oct 

2016 

5. Predicting Stock Market Behavior using Data Mining 

Technique and News Sentiment Analysis 

6. I Coded A Twitter Sentiment Analysis Trading Bot And Let It 

Trade! 

7. Hugging Face - BERT Documentation 
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https://www.researchgate.net/profile/Ayman-Khedr-2/publication/318298991_Predicting_Stock_Market_Behavior_using_Data_Mining_Technique_and_News_Sentiment_Analysis/links/5a5615a50f7e9bf2a5369631/Predicting-Stock-Market-Behavior-using-Data-Mining-Technique-and-News-Sentiment-Analysis.pdf
https://www.researchgate.net/profile/Ayman-Khedr-2/publication/318298991_Predicting_Stock_Market_Behavior_using_Data_Mining_Technique_and_News_Sentiment_Analysis/links/5a5615a50f7e9bf2a5369631/Predicting-Stock-Market-Behavior-using-Data-Mining-Technique-and-News-Sentiment-Analysis.pdf
https://www.youtube.com/watch?v=FFVxAsfLF7k
https://www.youtube.com/watch?v=FFVxAsfLF7k
https://huggingface.co/transformers/model_doc/bert.html
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A developer profile on Twitter8 is necessary to use the 

pipeline to get access to their API keys, and the Tweepy9 

Python library is used to extract real-time tweets from 

Twitter’s API. 

A stock trading account on Alpaca must also be 

created to get access to their API keys for trading money 

on a real or simulated version of the real stock market. 

3.2 Data Preprocessing 

The first stage of the pipeline is data preprocessing, 

and the data set used to train and test the sentiment 

classification model has sample size of 5790 tweets. 

The cross-entropy loss function that is used during 

training requires all target variables to be nonnegative, 

which required bearish target variables in the dataset to be 

replaced with a “0” instead of a “-1”. 

The data is then split 80-10-10 (train-test-validate) and 

encoded into vectors before being to be passed into a 

PyTorch DataLoader for the purpose of properly 

formatting the data for attention-masking in the BERT 

Transformer model.  

3.3 BERT Sentiment Classifier 

The Sentiment Classifier is built on top of the BERT 

model and includes a dropout layer for regularization. It 

then returns an output from the last fully connected layer 

because that is what is required for the cross-entropy loss 

function used during training. After 10 Epochs of training, 

the model predicted about 83% of the validation data 

correctly. So, there’s plenty of room for improvement.  

The BERT model computes a likelihood score for both 

the bullish and bearish classifications for a tweet, and its 

prediction is simply the larger value from the two. These 

likelihood scores are represented as floating decimal point 

numbers and may even be negative to suggest that the 

classification is very unlikely. For example, the model may 

assess a tweet with a bearish likelihood score of -0.1 and a 

bullish likelihood score of 0.1. Thus, the prediction would 

be bullish, but without much certainty, compared to a 

bearish likelihood score of -3.0 and a bullish likelihood 

score of 3.0. This level of certainty will be referenced again 

later in the pipeline. 

Why BERT? The classic LSTM and Transformer 

models only receive context from the words that have 

already occurred in the prior sequence of words. The BERT 

language model is conditioned on the words that occur on 

both sides of the word to be predicted. This is accomplished 

without allowing each word to indirectly see itself in a 

multi-layered context with the use of “masks.” The model 

masks 15% of the input’s words and has itself predict the 

missing words using the bidirectional context. Thus, BERT 

is more successful than other language models with 

identifying the sentimental differences between two 

sentences with similar words, yet different meaning, such 

as: “work to live” vs. “live to work.” 

  

3.4 Live Tweet Preprocessor 

Queries are made for tweets from Twitter’s API using 

the Tweepy Python library. The pipeline arranges a 

collection of stock ticker symbols into a Python dictionary 

as keys for the purpose of querying them to find tweets that 

contain those stock symbols.  

A forever running while-loop cycles through querying 

each of the stock symbols one at a time, and the Tweepy 

module initially returns a JSON formatted data frame of 

fixed length from the API. The data frame consists of the 

tweet text, a timestamp, a tweet id, the language, and much 

more. The tweet id is an integer associated with uniquely 

identifying each tweet that has ever been posted on Twitter, 

and as you might imagine, this number has gotten very 

large, as it increments by one with the creation of each new 

tweet. With each call to the API, the largest id is stored as 

a value in the stock symbol dictionary associated with the 

stock symbol key. Now, each subsequent query to the API 

makes sure to include that only tweets with an id greater 

than the one stored in the dictionary should be returned, 

thus avoiding the future analysis of duplicate tweets. 

From here, each tweet text from the JSON structure is 

“cleaned” using regular expressions, and then organized 

into a Pandas data frame, keeping only the tweet text and 

the tweet id.  

An area that requires more investigation is the topic of 

retweets. A retweet is an unoriginal post on Twitter that 

people use to re-post a message that was shared by the 

original tweeter. The twitter query returns these retweets as 

duplicate instances of text with a “RT” prefix. These may 

or may not be something to remove from the analysis. For 

this pipeline, the retweets were kept with the thought that 

it may be important to capture the essence of popular 

tweets that get repeated multiple times, which emphasizes 

their importance on a stock’s sentiment. Retweeting can be 

a sign of agreeing with the sentiment from another user, 

and that sentiment can have more weight on deciding 

whether to trade a stock if it gets repeated across Twitter. 

So, for now, retweets are considered valuable information 

not to be filtered. 

3.5 Live Tweet Sentiment Prediction 

The method that handles prediction of tweet sentiment 

accepts as arguments the sentiment classification model, 

the Pandas data frame of recent tweets, and the user’s 

desired risk level for stock trading, which is a value 

between zero (most conservative) and one (most risky).  

Next, it determines whether to trade a stock based on 

the certainty of the model’s prediction about the sentiment 

of tweets it has just analyzed. If the user sets their desired 

risk level closer to zero, then the BERT model is required 

to be more certain about its prediction before making a 

trade, thus decreasing the volume of trades that occur. 

Since the BERT model computes a likelihood score for 

both the bullish and bearish classifications for a tweet, 

certainty is defined as the difference between the two 

scores.  

The method also keeps a tally for a total polarity score 

for the incoming data frame, which increments by one with 

each certain bullish prediction and decrements by one with 

8. Twitter - Developer Platform 

9. Tweepy Documentation 

 

 

https://developer.twitter.com/en
https://docs.tweepy.org/en/stable/api.html#tweepy-api-twitter-api-wrapper
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each certain bearish prediction. Bullish and bearish 

predictions that do not meet the minimum level of certainty 

specified by the risk level do not affect the polarity score. 

The absolute value of the polarity score functions as a 

multiplier that contributes towards the decision of how 

many shares to buy of the specified stock. Thus, a polarity 

score of zero multiplies by zero, which results in not 

making any trades with that stock. Essentially, a score of 

zero means that the accumulated sentimental predictions of 

certainty from all of the tweets in the data frame was 

neutral, and this begins to happen more often as the user 

decreases the input of the risk level of their trading strategy. 

3.6 Live Stock Trader 

The method responsible for making trades 

communicates with the Alpaca API10. Initially, the trading 

bot checks if the market is even open for making trades so 

not to place orders that would otherwise stay pending 

outside of market hours until the market opens again, when 

the sentiment has likely changed.  

Next, if the predetermined polarity score is not zero, 

then the bot will start determining how many shares to 

trade and what type of trade to make. The number of shares 

to trade is a function of the polarity score, the price of the 

stock being traded, the account remaining buying power, 

and the accounts current value or equity.  

Before buying shares of a stock, the bot notes the 

current approximate price of the stock, then calculates a 

value equivalent to 1% of the current portfolio value 

divided by the current price of the stock, which is then 

multiplied by the polarity score to determine the quantity 

of shares to buy. This expense of this quantity of shares is 

then compared to the account’s current available buying 

power. If the buying power is exceeded by this amount, 

then the quantity is decremented by one share until the 

expense is affordable for the account to make the purchase 

or the quantity of shares to buy is zero. 

Before selling shares of a stock, the bot needs to 

determine if it even owns any of that stock to avoid 

throwing an error by trying to sell something it does not 

own. If it does own that stock, it then decides to sell the 

quantity of shares in the same way that it determines the 

number of shares to buy, using a combination of polarity 

score, portfolio value, and current approximate price per 

share. If that quantity is greater than the number of shares 

currently owned, then the bot simply sells all of that stock. 

With all this math and fact checking, there is still room 

for error because the current stock price is always an 

approximation since traders are buying and selling stock at 

various prices within milliseconds of each other. Thus, the 

order is placed within a try-except block and marked as a 

valid trade once complete, inspired by how mutual 

exclusion locks work with parallel programming systems. 

If an error is thrown because the trade expense is suddenly 

too expensive within milliseconds, the bot decrements the 

quantity of shares to buy by one and tries again. If the 

quantity decreases to zero before it becomes affordable, 

then the transaction is marked as “skipped”, terminates the 

trading process, and exits the function.  

Along with a time stamp, the function returns one of 

the following messages at the end of its run: 

• Success! Order placed to {buy/sell} {quantity} 

shares of {ticker}. 

• Trade failed. Alpaca account status: 

{open/suspended}. 

• Transaction prices changed during processing. 

Either not enough buying power or insufficient 

shares to sell. Skipping. 

• You don't have enough buying power to buy 

{ticker}. Skipping. 

• You do not own any shares of {ticker} to sell. 

Skipping. 

• No orders were made because the stock market is 

currently closed for trading. 

4 Results 

The first day of trading, which occurred on Monday, 

August 25th, 2021, was a success up 1.8% using a 

predefined risk level of 0.2. It was generally a good day for 

most people trading that day. The S&P500 and DJIA were 

up 0.85% and 0.61%, respectively. The bot did produce 

higher returns than the S&P500 and the DIJA, although this 

is largely due to the stocks that were picked simply doing 

well that day. 

The following table displays the stocks in the bot’s 

portfolio, and their price changes for that day. Note that 

these were the only stocks that the bot was allowed to 

consider as predefined by the user. Also note once more for 

clarity that the following table is not describing the bot’s 

portfolio, but rather each stock’s price change for the day. 

 

AAPL 1.03% NFLX 1.18% 

ABNB 2.15% NVDA 5.49% 

AMD 3.94% SPY 0.87% 

BA 3.16% TSLA 3.83% 

DIS 1.45% VZ -0.18% 

FB 1.11% XOM 4.11% 

GOOGL 1.90% Average 2.31% 

Figure 2    Stock Performance in the Bot’s Portfolio on Monday 
 

One indication of negative performance in my bot 

includes the observation that if equal amounts of money 

were spent buying each of the stocks in the portfolio at the 

beginning of the day and held onto until the end of the day, 

then the “uniform-portfolio” return would have been about 

2.3%, which is a lot higher than the 1.8% that the bot 

returned. 

However, there is also a clear sign of positive 

performance. The key idea is to notice the correlation 

between the market value of stocks in the portfolio and the 

sentiment of stocks that did well that day, and what is 

meant by that is the sentiment of tweets from Twitter 

guided the trading bot in the right direction to buy more 

stocks with more bullish sentiment, and shy away from 

stocks receiving a lot of negative sentiment.  10. Alpaca - API Documentation 

 

 

https://alpaca.markets/docs/


5 

To Illustrate this key idea, we’ll look at three of the top 

four performing stocks in the portfolio from that day, 

namely NVDA, AMD, and TSLA. The “market value” for 

a stock in a portfolio is the number of shares owned times 

the market price for that stock. Thus, we hope that the bot 

has placed most of its money into stocks that it has seen 

receive the most bullish sentiment on Twitter. Since our bot 

is using sentiment analysis - It is no coincidence that the 

bot learned from Twitter to buy more shares of NVDA 

(+5.94%), AMD (+3.94%), and TSLA (+3.83%), which 

are the stocks with the highest market value in the portfolio. 

 

Figure 3    Bot’s Portfolio near end of market hours, Monday 
 

Given the portfolio shows the market value for these 

three stocks is higher than all the other stocks in the 

portfolio. we can infer that the bot intelligently learned 

from tweets that these three stocks were looking bullish 

that day, and it acted accordingly.  

Now, one might assume that the market value for a 

stock in the portfolio is correlated with the price per share 

of that stock such that a more expensive stock, such as 

TSLA, would act as a larger multiplier towards more 

money invested in that stock, but as mentioned earlier, the 

bot’s stock purchasing function is programmed to scale 

down the number of shares to buy when a stock is more 

expensive. This is illustrated by noticing how shares of 

NVDA cost less than shares of TSLA, so the bot scaled up 

the number of shares it could afford per bullish polarity 

point when buying NVDA. 

To summarize this big idea - the bot’s intelligence is 

coming purely from the sentiment of tweets because it has 

absolutely no idea how well a stock is performing when it 

decides to trade it. It doesn’t get any input about its 

trending price or any other kind of financial data; it only 

makes decisions based on the live opinions from people on 

Twitter. 

Of course, this bot is clearly not perfect because it 

missed a beat with the Exxon Mobile stock (XOM), which 

was up 4% that day. 

5 Areas of Improvement 

The prediction accuracy would benefit tremendously 

from a larger data set than 5,790 tweets. It is a good start, 

but it is a relatively small sample size, and may be causing 

some overfitting. Additionally, the implementation of cross 

validation splitting on the data could do no harm.  

Through patient trial and error and perhaps multiple 

GPU’s, one could find a more optimal combination of  

adjustable model parameters, such as learning rate and 

the dropout layer. 

There is a surprisingly large number of variables that 

go into a search query for tweets from the Twitter API. This 

pipeline simply queried for ticker hashtags one at a time, 

but often -times twitter users included multiple ticker tags 

within the same tweet, which may or may not be throwing 

off the prediction. This can be avoided by adjusting the 

query function to filter out stock symbols in tweets for a 

specified symbol query. Figuring out a good way to handle 

this issue would require some experimentation. 

There’s a lot of improvement to be made with the 

actual stock trading strategy. For the sake of making this 

more of an NLP project instead of a stock trading project – 

there really wasn’t any special strategy. The bot uses 

simple market orders on a portfolio of stocks that have very 

little diversity. A handful of well-known stocks were 

chosen, and it just so happens that most of them are tech 

companies. So, there’s a lot of strategy left to play with, 

such as the use of limit ordering, and fine tuning the bot’s 

way of determining how certain it is with its predictions, 

which directly affects how many shares of a stock to trade.  

Additionally, the bot purposely pauses between 

queries so not to exceed query limits on Twitter and 

Alpaca, so there is about 9 seconds between each stock 

analysis. Thus, a portfolio of 13 stocks takes about 2 

minutes to cycle through, which creates about a 2-minute 

window for disaster to strike a particular stock before the 

bot notices. So fine tuning the wait times to maximize 

queries without exceeding limits is critical for users with 

larger portfolios. 

A farther-reaching goal would be to have sentiment 

analysis play a complementary role in an ensemble of 

machine learning models to make good trading decisions, 

such as weighing sentimental predictions against a stock’s 

historical price trend.  

6 Effort 

The decision on which language model to use 

transitioned almost synchronously with the completion of 

each Natural Language Processing homework assignment 

at The University of Chicago. Initially the use of a CNN 

was of primary interest since the details of its functionality 

were clear from a previous machine learning class. This 

desire quickly switched to using an RNN due to a bias 

towards it after spending considerable time learning about 

it. Finally, one last transition was made to using a 

Transformer after studying it more recently and 
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considering its resume appeal for being a relatively hot 

topic in the field.  

Additional understanding was necessary to use the 

BERT Transformer, which was accomplished through 

reading 𝑇ℎ𝑒 𝐼𝑙𝑙𝑢𝑠𝑡𝑟𝑎𝑡𝑒𝑑 𝐵𝐸𝑅𝑇11 and Hugging Face’s 

documentation for BERT using PyTorch. 

The Tweepy library, Twitter API, Alpaca API, are all 

new skills. Tweepy’s documentation is well-written, so it 

was not difficult to find what was needed to complete that 

section of the pipeline. Getting approved for a developer 

account through Twitter was much more of a hassle. An 

initial application was required, as well as multiple emails 

back and forth with the Twitter team to specifically verify 

the intentions for using their data. The documentation for 

how to use the Alpaca API is incomplete or lacking. There 

is however a community forum and Slack page, where 

undocumented code was discovered thanks to other 

developers who were so gracious to answer questions. 

 

Time spent on this project initially started with the 

reading of research papers and watching YouTube videos 

to get an idea for what could be possible. Once the pipeline 

started coming to fruition, little time was spent reading 

other work compared to the fine tuning of this pipeline’s 

parameters and reading documentation on the 

dependencies for this project. 

7 Conclusion 

After three days, the bot’s portfolio value has 

increased from $1M using $4M in buying power to 

$1.08M, but it will take many more days of evaluating the 

bot’s performance to determine if it is a good stand-alone 

stock trading model that can be relied upon to multiply 

one’s investments without intervention.   

There are plenty of simple improvements to be made 

before considering the tremendous risk of using real 

money. 
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A Appendix 

A.1 Source Code 

The source code for this project can be found on 

GitHub at https://github.com/ericzacharia/Predicting-

Stocks-with-Twitter-Sentiment. 

A.2 Video Presentation 

A video presentation on this article can be found on 

YouTube at https://youtu.be/ZJDqm7mhDfI.
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Transfer Learning) 

 

 

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://developer.twitter.com/en/docs/twitter-api
https://docs.tweepy.org/en/stable/api.html#tweepy-api-twitter-api-wrapper
https://docs.tweepy.org/en/stable/api.html#tweepy-api-twitter-api-wrapper
https://alpaca.markets/docs/
https://github.com/ericzacharia/Predicting-Stocks-with-Twitter-Sentiment
https://github.com/ericzacharia/Predicting-Stocks-with-Twitter-Sentiment
https://youtu.be/ZJDqm7mhDfI
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/

