
1

Predicting the Stock Market using the BERT Model and

Sentiment Analysis of Live Tweets

Eric Zacharia

Computer Science Master’s Student

Specialty in Data Analytics, The University of Chicago

August 26, 2021

Abstract
 Predicting the best stocks to buy while day-trading the stock market is a dream for many seeking financial

freedom. While there are heaps of existing day-trading strategies, many of them involve long hours of strict human

focus on the numerical trends of stock prices and the contextual trends from news sources that directly correlate to

the future value of publicly traded companies. We live in an age where there exists a subcategory of machine learning

that can help reduce the manual burden of analysis and automate tasks that predict trends quicker than any human.

Enter Natural Language Processing (NLP) and the Transformer1 model for sentiment analysis. This article

discusses the use of an NLP pipeline that trains an altered BERT2 model with tweets from Twitter to make

predictions about their bullish and bearish sentiments concerning stocks. The pipeline then conducts trades based

on a user’s predefined portfolio and desired risk level.

1 Introduction

The purpose of this project was to create an artificially

intelligent stock trading bot that makes decisions regarding

the trading of stocks based on the opinions that people

share about stocks on Twitter. The word “intelligent” is

used to describe how this bot performs because it makes

decisions without human intervention using probability.

This intelligence is attained using supervised machine

learning techniques, which is the process of using pre-

labeled data and probability theory to make predictions on

unclassified data.

In our case, we have a labeled dataset of Tweets about

stocks and their corresponding bearish or bullish sentiment,

which was used to train and test the sentiment classification

model. The words bearish and bullish refer to the perceived

trend of how well the price per share of a publicly traded

company is performing on the stock market. Bearish is

perceived as poor performance that would decrease the

company’s value, and bullish is perceived as strong

performance that would increase the company’s value.

Trading stocks on these sentiments, before everyone else

does, to return a profit would be considered “predicting the

stock market.”

1.1 Why Sentiment Analysis?

Many investors are swayed in their trading

decisions by news about publicly traded companies, and

many of those investors include the analysis of news in

their stock trading strategy. Some long-term traders might

be more interested in calculating the valuation of a stock

based in the company’s performance metrics, while many

short-term or day-traders might find including news in their

analysis to be beneficial.

1.2 Why Use Twitter as the Source of News?

Often-times a news headline can give us a gist of

whether a company is about to make or lose a lot of money,

but there are a few reasons why this bot is focused on using

tweets from Twitter for sentiment analysis instead of

typical well-known news sources, such as The Wall Street

Journal.

News articles are long. Predicting the sentiment on a

long piece of text can cause a lengthy computation time for

our model. This can cause issues for day-trading stocks

because time is of the essence. Keeping the analyzed text

short and sweet can make for swift analysis and thus

quicker trading. Thus, perhaps we could consider just the

news headline?

A potentially harmful issue with using just news

headlines is “click-bait,” which is a flashy headline that

encourages potential readers to click on an article and start

reading it. Sometimes the contents of these articles do not

align with the potentially misleading headline – which

could mean tricking the bot into predicting a bearish

sentiment when the article might have bullish sentiment.

Two major downfalls of mainstream news are the low

volume of articles that get produced per day and the time it

takes for a journalism team to produce it. There are many

news sources reporting on the stock market, but their

abundance is countably finite and their proofing takes time.

Thus, we turn our attention to tweets about stocks on

Twitter.

While tweets on Twitter are neither infinite nor

factual, the overwhelming volume of opinions that get

shared on Twitter every second is appealing due to its

fluidity, and people on Twitter tend to express their

opinions via tweets about how stocks are performing

throughout market hours. This information is valuable

because it can be viewed as contextual information for how

the market is performing in real time. Natural Language

Processing and sentiment analysis can be used to identify

trends from these opinions and produce a majority-ruled

polarity score for the sentiment of a particular stock. People

are relatively quick to post a quick tweet about a major

1. Attention is all you need - arXiv:1706.03762v5 [cs.CL] 6 Dec

2017

2. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding - arXiv:1810.04805v2 [cs.CL] 24

May 2019

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

2

price change of a stock compared to the time it takes for a

journalist to post an article about it on the web.

The speed of Twitter relative to typical news stories

can be illustrated with an example of a panic-driven sell-

off in market shares that occurred on April 23rd, 2013. The

sell-off was caused by a tweet3 from The Associated Press’

Twitter account that read, “Breaking: Two Explosions in

the White House and Barak Obama is injured.” At the time,

The Associated Press (AP) had about 11 million followers,

and the moment the tweet was released, investors had sold

stocks in a panic, only to find that the tweet was malicious.

Figure 1 Malicious Tweet on Associated Press’ Twitter Account

This example plays a major role in why many

investors today monitor Twitter for news headlines –

because news spreads quickly on Twitter. News stations

were not quick enough to cover this 5-minute event, but

other market analysts were able to denounce this fake tweet

using Twitter much sooner. This example certainly shows

a shortcoming of sentiment analysis of tweets. How do we

know that a tweet is legitimate? It is also to shows why we

are interested in Twitter and not just news headlines –

because Twitter news travels faster.

1.3 The Language Model

The sentiment analysis of text builds off the idea of a

language model, which is a probability distribution over a

sequence of words. Language models have evolved from

n-gram models, which struggle with sparse vectors and

expensive computation, to neural network models, which

struggle contextually with the restrictive window-of-words

Markov Assumption, to recurrent neural network models,

which struggle with vanishing and exploding gradients, to

Long-Short-Term-Memory models, which struggle with

lengthy training times due to their recursive and

computationally dependent nature, to the rather new

Transformer models which reduce training times by

allowing for some parallel computation to be done during

training.

The BERT model is a popular refined version of the

original Transformer model, and because it has gained a lot

of popularity for its successes with accuracy and quickness

in recent years – it presented itself as an obvious choice for

this type of project.

2 Related Work

In 2016, a team of researchers claimed that a strong

correlation exists between rise and fall in stock prices of a

company and the public opinions or emotions about that

company expressed on Twitter through tweets4. The main

contribution of their work is the development of a

sentiment analyzer that can judge the type of sentiment

present in the tweet using an n-gram model and a

Word2vec model. They concluded their research without

any documented application.

In 2017, a team of researchers investigated the

simultaneous effect of analyzing different types of news

along with historical numeric attributes for understanding

stock market behavior5. Their model improved its

accuracy by considering news with different values of

numeric attributes during a day. Three categories of news

data were considered: news relevant to market, company

news and financial reports that were published by financial

experts about stocks. The model consisted of two stages. 1.

Determine the news polarities to be either positive or

negative using naïve Bayes algorithm. 2. Incorporate the

output of the first stage as input along with the processed

historical numeric data attributes to predict the future stock

trend using K-NN algorithm. Their model achieved an

accuracy up to 89.80%. They also concluded their research

without documented application.

In 2020, a YouTuber, named “The Code Whisperer”

posted a video6 of himself writing code to scrape tweets

from Twitter, analyze their sentiment, and then conduct

trades based on that sentiment using the Alpaca trading

platform. He appears to classify tweets using a python

library called pickle, and he also uses Tweepy for scraping

tweets. This video was the primary inspiration for this

project.

3 Sentiment-Trading Pipeline

3.1 Tools for Implementation

The entire pipeline is written in Python using multiple

libraries. The PyTorch and Pandas libraries are used

throughout the program to organize and manipulate tensors

and matrices of data used to train the model and make

predictions on the sentiment of text. The base BERT

Transformer model that is used comes from the developers

at hugging face7.

The model is initially trained with Google Colab’s

GPUs, then its tensors and predictions are saved into files

to be used again as a pretrained model that is read into the

program. This was helpful to prevent running over Google

Colab’s GPU computation limit and allows for the

remainder of the pipeline to be quickly run on a local

machine’s CPU.

3. Syrian hackers claim AP hack that tipped stock market by

$136 billion. Is it terrorism? - The Washington Post

4. Sentiment Analysis of Twitter Data for Predicting Stock

Market Movements - arXiv:1610.09225v1 [cs.IR] 28 Oct

2016

5. Predicting Stock Market Behavior using Data Mining

Technique and News Sentiment Analysis

6. I Coded A Twitter Sentiment Analysis Trading Bot And Let It

Trade!

7. Hugging Face - BERT Documentation

https://www.washingtonpost.com/news/worldviews/wp/2013/04/23/syrian-hackers-claim-ap-hack-that-tipped-stock-market-by-136-billion-is-it-terrorism/
https://www.washingtonpost.com/news/worldviews/wp/2013/04/23/syrian-hackers-claim-ap-hack-that-tipped-stock-market-by-136-billion-is-it-terrorism/
https://arxiv.org/pdf/1610.09225.pdf
https://arxiv.org/pdf/1610.09225.pdf
https://arxiv.org/pdf/1610.09225.pdf
https://www.researchgate.net/profile/Ayman-Khedr-2/publication/318298991_Predicting_Stock_Market_Behavior_using_Data_Mining_Technique_and_News_Sentiment_Analysis/links/5a5615a50f7e9bf2a5369631/Predicting-Stock-Market-Behavior-using-Data-Mining-Technique-and-News-Sentiment-Analysis.pdf
https://www.researchgate.net/profile/Ayman-Khedr-2/publication/318298991_Predicting_Stock_Market_Behavior_using_Data_Mining_Technique_and_News_Sentiment_Analysis/links/5a5615a50f7e9bf2a5369631/Predicting-Stock-Market-Behavior-using-Data-Mining-Technique-and-News-Sentiment-Analysis.pdf
https://www.youtube.com/watch?v=FFVxAsfLF7k
https://www.youtube.com/watch?v=FFVxAsfLF7k
https://huggingface.co/transformers/model_doc/bert.html

3

A developer profile on Twitter8 is necessary to use the

pipeline to get access to their API keys, and the Tweepy9

Python library is used to extract real-time tweets from

Twitter’s API.

A stock trading account on Alpaca must also be

created to get access to their API keys for trading money

on a real or simulated version of the real stock market.

3.2 Data Preprocessing

The first stage of the pipeline is data preprocessing,

and the data set used to train and test the sentiment

classification model has sample size of 5790 tweets.

The cross-entropy loss function that is used during

training requires all target variables to be nonnegative,

which required bearish target variables in the dataset to be

replaced with a “0” instead of a “-1”.

The data is then split 80-10-10 (train-test-validate) and

encoded into vectors before being to be passed into a

PyTorch DataLoader for the purpose of properly

formatting the data for attention-masking in the BERT

Transformer model.

3.3 BERT Sentiment Classifier

The Sentiment Classifier is built on top of the BERT

model and includes a dropout layer for regularization. It

then returns an output from the last fully connected layer

because that is what is required for the cross-entropy loss

function used during training. After 10 Epochs of training,

the model predicted about 83% of the validation data

correctly. So, there’s plenty of room for improvement.

The BERT model computes a likelihood score for both

the bullish and bearish classifications for a tweet, and its

prediction is simply the larger value from the two. These

likelihood scores are represented as floating decimal point

numbers and may even be negative to suggest that the

classification is very unlikely. For example, the model may

assess a tweet with a bearish likelihood score of -0.1 and a

bullish likelihood score of 0.1. Thus, the prediction would

be bullish, but without much certainty, compared to a

bearish likelihood score of -3.0 and a bullish likelihood

score of 3.0. This level of certainty will be referenced again

later in the pipeline.

Why BERT? The classic LSTM and Transformer

models only receive context from the words that have

already occurred in the prior sequence of words. The BERT

language model is conditioned on the words that occur on

both sides of the word to be predicted. This is accomplished

without allowing each word to indirectly see itself in a

multi-layered context with the use of “masks.” The model

masks 15% of the input’s words and has itself predict the

missing words using the bidirectional context. Thus, BERT

is more successful than other language models with

identifying the sentimental differences between two

sentences with similar words, yet different meaning, such

as: “work to live” vs. “live to work.”

3.4 Live Tweet Preprocessor

Queries are made for tweets from Twitter’s API using

the Tweepy Python library. The pipeline arranges a

collection of stock ticker symbols into a Python dictionary

as keys for the purpose of querying them to find tweets that

contain those stock symbols.

A forever running while-loop cycles through querying

each of the stock symbols one at a time, and the Tweepy

module initially returns a JSON formatted data frame of

fixed length from the API. The data frame consists of the

tweet text, a timestamp, a tweet id, the language, and much

more. The tweet id is an integer associated with uniquely

identifying each tweet that has ever been posted on Twitter,

and as you might imagine, this number has gotten very

large, as it increments by one with the creation of each new

tweet. With each call to the API, the largest id is stored as

a value in the stock symbol dictionary associated with the

stock symbol key. Now, each subsequent query to the API

makes sure to include that only tweets with an id greater

than the one stored in the dictionary should be returned,

thus avoiding the future analysis of duplicate tweets.

From here, each tweet text from the JSON structure is

“cleaned” using regular expressions, and then organized

into a Pandas data frame, keeping only the tweet text and

the tweet id.

An area that requires more investigation is the topic of

retweets. A retweet is an unoriginal post on Twitter that

people use to re-post a message that was shared by the

original tweeter. The twitter query returns these retweets as

duplicate instances of text with a “RT” prefix. These may

or may not be something to remove from the analysis. For

this pipeline, the retweets were kept with the thought that

it may be important to capture the essence of popular

tweets that get repeated multiple times, which emphasizes

their importance on a stock’s sentiment. Retweeting can be

a sign of agreeing with the sentiment from another user,

and that sentiment can have more weight on deciding

whether to trade a stock if it gets repeated across Twitter.

So, for now, retweets are considered valuable information

not to be filtered.

3.5 Live Tweet Sentiment Prediction

The method that handles prediction of tweet sentiment

accepts as arguments the sentiment classification model,

the Pandas data frame of recent tweets, and the user’s

desired risk level for stock trading, which is a value

between zero (most conservative) and one (most risky).

Next, it determines whether to trade a stock based on

the certainty of the model’s prediction about the sentiment

of tweets it has just analyzed. If the user sets their desired

risk level closer to zero, then the BERT model is required

to be more certain about its prediction before making a

trade, thus decreasing the volume of trades that occur.

Since the BERT model computes a likelihood score for

both the bullish and bearish classifications for a tweet,

certainty is defined as the difference between the two

scores.

The method also keeps a tally for a total polarity score

for the incoming data frame, which increments by one with

each certain bullish prediction and decrements by one with

8. Twitter - Developer Platform

9. Tweepy Documentation

https://developer.twitter.com/en
https://docs.tweepy.org/en/stable/api.html#tweepy-api-twitter-api-wrapper

4

each certain bearish prediction. Bullish and bearish

predictions that do not meet the minimum level of certainty

specified by the risk level do not affect the polarity score.

The absolute value of the polarity score functions as a

multiplier that contributes towards the decision of how

many shares to buy of the specified stock. Thus, a polarity

score of zero multiplies by zero, which results in not

making any trades with that stock. Essentially, a score of

zero means that the accumulated sentimental predictions of

certainty from all of the tweets in the data frame was

neutral, and this begins to happen more often as the user

decreases the input of the risk level of their trading strategy.

3.6 Live Stock Trader

The method responsible for making trades

communicates with the Alpaca API10. Initially, the trading

bot checks if the market is even open for making trades so

not to place orders that would otherwise stay pending

outside of market hours until the market opens again, when

the sentiment has likely changed.

Next, if the predetermined polarity score is not zero,

then the bot will start determining how many shares to

trade and what type of trade to make. The number of shares

to trade is a function of the polarity score, the price of the

stock being traded, the account remaining buying power,

and the accounts current value or equity.

Before buying shares of a stock, the bot notes the

current approximate price of the stock, then calculates a

value equivalent to 1% of the current portfolio value

divided by the current price of the stock, which is then

multiplied by the polarity score to determine the quantity

of shares to buy. This expense of this quantity of shares is

then compared to the account’s current available buying

power. If the buying power is exceeded by this amount,

then the quantity is decremented by one share until the

expense is affordable for the account to make the purchase

or the quantity of shares to buy is zero.

Before selling shares of a stock, the bot needs to

determine if it even owns any of that stock to avoid

throwing an error by trying to sell something it does not

own. If it does own that stock, it then decides to sell the

quantity of shares in the same way that it determines the

number of shares to buy, using a combination of polarity

score, portfolio value, and current approximate price per

share. If that quantity is greater than the number of shares

currently owned, then the bot simply sells all of that stock.

With all this math and fact checking, there is still room

for error because the current stock price is always an

approximation since traders are buying and selling stock at

various prices within milliseconds of each other. Thus, the

order is placed within a try-except block and marked as a

valid trade once complete, inspired by how mutual

exclusion locks work with parallel programming systems.

If an error is thrown because the trade expense is suddenly

too expensive within milliseconds, the bot decrements the

quantity of shares to buy by one and tries again. If the

quantity decreases to zero before it becomes affordable,

then the transaction is marked as “skipped”, terminates the

trading process, and exits the function.

Along with a time stamp, the function returns one of

the following messages at the end of its run:

• Success! Order placed to {buy/sell} {quantity}

shares of {ticker}.

• Trade failed. Alpaca account status:

{open/suspended}.

• Transaction prices changed during processing.

Either not enough buying power or insufficient

shares to sell. Skipping.

• You don't have enough buying power to buy

{ticker}. Skipping.

• You do not own any shares of {ticker} to sell.

Skipping.

• No orders were made because the stock market is

currently closed for trading.

4 Results

The first day of trading, which occurred on Monday,

August 25th, 2021, was a success up 1.8% using a

predefined risk level of 0.2. It was generally a good day for

most people trading that day. The S&P500 and DJIA were

up 0.85% and 0.61%, respectively. The bot did produce

higher returns than the S&P500 and the DIJA, although this

is largely due to the stocks that were picked simply doing

well that day.

The following table displays the stocks in the bot’s

portfolio, and their price changes for that day. Note that

these were the only stocks that the bot was allowed to

consider as predefined by the user. Also note once more for

clarity that the following table is not describing the bot’s

portfolio, but rather each stock’s price change for the day.

AAPL 1.03% NFLX 1.18%

ABNB 2.15% NVDA 5.49%

AMD 3.94% SPY 0.87%

BA 3.16% TSLA 3.83%

DIS 1.45% VZ -0.18%

FB 1.11% XOM 4.11%

GOOGL 1.90% Average 2.31%

Figure 2 Stock Performance in the Bot’s Portfolio on Monday

One indication of negative performance in my bot

includes the observation that if equal amounts of money

were spent buying each of the stocks in the portfolio at the

beginning of the day and held onto until the end of the day,

then the “uniform-portfolio” return would have been about

2.3%, which is a lot higher than the 1.8% that the bot

returned.

However, there is also a clear sign of positive

performance. The key idea is to notice the correlation

between the market value of stocks in the portfolio and the

sentiment of stocks that did well that day, and what is

meant by that is the sentiment of tweets from Twitter

guided the trading bot in the right direction to buy more

stocks with more bullish sentiment, and shy away from

stocks receiving a lot of negative sentiment. 10. Alpaca - API Documentation

https://alpaca.markets/docs/

5

To Illustrate this key idea, we’ll look at three of the top

four performing stocks in the portfolio from that day,

namely NVDA, AMD, and TSLA. The “market value” for

a stock in a portfolio is the number of shares owned times

the market price for that stock. Thus, we hope that the bot

has placed most of its money into stocks that it has seen

receive the most bullish sentiment on Twitter. Since our bot

is using sentiment analysis - It is no coincidence that the

bot learned from Twitter to buy more shares of NVDA

(+5.94%), AMD (+3.94%), and TSLA (+3.83%), which

are the stocks with the highest market value in the portfolio.

Figure 3 Bot’s Portfolio near end of market hours, Monday

Given the portfolio shows the market value for these

three stocks is higher than all the other stocks in the

portfolio. we can infer that the bot intelligently learned

from tweets that these three stocks were looking bullish

that day, and it acted accordingly.

Now, one might assume that the market value for a

stock in the portfolio is correlated with the price per share

of that stock such that a more expensive stock, such as

TSLA, would act as a larger multiplier towards more

money invested in that stock, but as mentioned earlier, the

bot’s stock purchasing function is programmed to scale

down the number of shares to buy when a stock is more

expensive. This is illustrated by noticing how shares of

NVDA cost less than shares of TSLA, so the bot scaled up

the number of shares it could afford per bullish polarity

point when buying NVDA.

To summarize this big idea - the bot’s intelligence is

coming purely from the sentiment of tweets because it has

absolutely no idea how well a stock is performing when it

decides to trade it. It doesn’t get any input about its

trending price or any other kind of financial data; it only

makes decisions based on the live opinions from people on

Twitter.

Of course, this bot is clearly not perfect because it

missed a beat with the Exxon Mobile stock (XOM), which

was up 4% that day.

5 Areas of Improvement

The prediction accuracy would benefit tremendously

from a larger data set than 5,790 tweets. It is a good start,

but it is a relatively small sample size, and may be causing

some overfitting. Additionally, the implementation of cross

validation splitting on the data could do no harm.

Through patient trial and error and perhaps multiple

GPU’s, one could find a more optimal combination of

adjustable model parameters, such as learning rate and

the dropout layer.

There is a surprisingly large number of variables that

go into a search query for tweets from the Twitter API. This

pipeline simply queried for ticker hashtags one at a time,

but often -times twitter users included multiple ticker tags

within the same tweet, which may or may not be throwing

off the prediction. This can be avoided by adjusting the

query function to filter out stock symbols in tweets for a

specified symbol query. Figuring out a good way to handle

this issue would require some experimentation.

There’s a lot of improvement to be made with the

actual stock trading strategy. For the sake of making this

more of an NLP project instead of a stock trading project –

there really wasn’t any special strategy. The bot uses

simple market orders on a portfolio of stocks that have very

little diversity. A handful of well-known stocks were

chosen, and it just so happens that most of them are tech

companies. So, there’s a lot of strategy left to play with,

such as the use of limit ordering, and fine tuning the bot’s

way of determining how certain it is with its predictions,

which directly affects how many shares of a stock to trade.

Additionally, the bot purposely pauses between

queries so not to exceed query limits on Twitter and

Alpaca, so there is about 9 seconds between each stock

analysis. Thus, a portfolio of 13 stocks takes about 2

minutes to cycle through, which creates about a 2-minute

window for disaster to strike a particular stock before the

bot notices. So fine tuning the wait times to maximize

queries without exceeding limits is critical for users with

larger portfolios.

A farther-reaching goal would be to have sentiment

analysis play a complementary role in an ensemble of

machine learning models to make good trading decisions,

such as weighing sentimental predictions against a stock’s

historical price trend.

6 Effort

The decision on which language model to use

transitioned almost synchronously with the completion of

each Natural Language Processing homework assignment

at The University of Chicago. Initially the use of a CNN

was of primary interest since the details of its functionality

were clear from a previous machine learning class. This

desire quickly switched to using an RNN due to a bias

towards it after spending considerable time learning about

it. Finally, one last transition was made to using a

Transformer after studying it more recently and

6

considering its resume appeal for being a relatively hot

topic in the field.

Additional understanding was necessary to use the

BERT Transformer, which was accomplished through

reading 𝑇ℎ𝑒 𝐼𝑙𝑙𝑢𝑠𝑡𝑟𝑎𝑡𝑒𝑑 𝐵𝐸𝑅𝑇11 and Hugging Face’s

documentation for BERT using PyTorch.

The Tweepy library, Twitter API, Alpaca API, are all

new skills. Tweepy’s documentation is well-written, so it

was not difficult to find what was needed to complete that

section of the pipeline. Getting approved for a developer

account through Twitter was much more of a hassle. An

initial application was required, as well as multiple emails

back and forth with the Twitter team to specifically verify

the intentions for using their data. The documentation for

how to use the Alpaca API is incomplete or lacking. There

is however a community forum and Slack page, where

undocumented code was discovered thanks to other

developers who were so gracious to answer questions.

Time spent on this project initially started with the

reading of research papers and watching YouTube videos

to get an idea for what could be possible. Once the pipeline

started coming to fruition, little time was spent reading

other work compared to the fine tuning of this pipeline’s

parameters and reading documentation on the

dependencies for this project.

7 Conclusion

After three days, the bot’s portfolio value has

increased from $1M using $4M in buying power to

$1.08M, but it will take many more days of evaluating the

bot’s performance to determine if it is a good stand-alone

stock trading model that can be relied upon to multiply

one’s investments without intervention.

There are plenty of simple improvements to be made

before considering the tremendous risk of using real

money.

Bibliography

1. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

Kaiser, and Illia Polosukhin. 2017. “Attention is all

you need.”

2. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. "BERT: Pre-training of

Deep Bidirectional Transformers for Language

Understanding".

3. Max Fisher. 2013. “Syrian hackers claim AP hack that

tipped stock market by $136 billion. Is it terrorism?”

4. Venkata Sasank Pagolu, Kamal Nayan Reddy Challa,

Ganapati Panda, Babita Majhi. 2016. "Sentiment

Analysis of Twitter Data for Predicting Stock Market

Movements".

5. Ayman E. Khedr, S.E.Salama, and Nagwa Yaseen.

2017. "Predicting Stock Market Behavior using Data

Mining Technique and News Sentiment Analysis"

6. The Code Whisperer. 2020. "I Coded A Twitter

Sentiment Analysis Trading Bot And Let It Trade!"

7. Hugging Face – BERT Transformer Library

https://huggingface.co/transformers/model_doc/bert.h

tml

8. Twitter Developer Platform - API documentation.

https://developer.twitter.com/en/docs/twitter-api

9. Tweepy Python library - API documentation.

https://docs.tweepy.org/en/stable/api.html#tweepy-

api-twitter-api-wrapper

10. Alpaca trading platform – API documentation.

https://alpaca.markets/docs/

11. Jay Alammar. 2018. "The Illustrated BERT, ELMo,

and co. (How NLP Cracked Transfer Learning)".

12. Khan Saad Bin Hasan. 2019. “Stock Prediction Using

Twitter”.

13. Qiurui Chen. 2020. “Language Models and RNN”.

A Appendix

A.1 Source Code

The source code for this project can be found on

GitHub at https://github.com/ericzacharia/Predicting-

Stocks-with-Twitter-Sentiment.

A.2 Video Presentation

A video presentation on this article can be found on

YouTube at https://youtu.be/ZJDqm7mhDfI.

11. The Illustrated BERT, ELMo, and co. (How NLP Cracked

Transfer Learning)

https://huggingface.co/transformers/model_doc/bert.html
https://huggingface.co/transformers/model_doc/bert.html
https://developer.twitter.com/en/docs/twitter-api
https://docs.tweepy.org/en/stable/api.html#tweepy-api-twitter-api-wrapper
https://docs.tweepy.org/en/stable/api.html#tweepy-api-twitter-api-wrapper
https://alpaca.markets/docs/
https://github.com/ericzacharia/Predicting-Stocks-with-Twitter-Sentiment
https://github.com/ericzacharia/Predicting-Stocks-with-Twitter-Sentiment
https://youtu.be/ZJDqm7mhDfI
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/

